Abstract

The incubation of intact mouse diaphragms with insulin caused a dose and time dependent increase in the independent activity of glycogen synthase in tissue extracts. 2-deoxyglucose (2-10 mM) alone markedly stimulated the conversion of glycogen synthase to the independent activity under conditions in which tissue ATP concentrations were not affected. The incubation of diaphragms with both insulin and 2-deoxyglucose resulted in a greater than additive effect. Insulin stimulated the uptake of 2-deoxyglucose into mouse diaphragms, accumulating as 2-deoxyglucose-6-phosphate. The accumulation of 2-deoxyglucose-6-phosphate correlated well with the increase in the independent activity of glycogen synthase and with the activation of glycogen synthase phosphatase in tissue extracts. The uptake of 3-0 methyl glucose was also markedly stimulated by insulin, without affecting the activity of glycogen synthase. Both glucose-6-phosphate and 2-deoxyglucose-6-phosphate stimulated the activation of endogenous glycogen synthase phosphatase activity in muscle homogenates. We conclude that insulin, in addition to its effects in the absence of exogenous sugars, increases the independent activity of glycogen synthase through increased sugar transport resulting in increased concentrations of sugar-phosphates which promote the activity of glycogen synthase phosphatase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.