Abstract

Effective and stable antibiofouling surfaces and interfaces have long been of research interest. In this study, we designed, fabricated, and evaluated a surface coated with insulated interlaced electrodes for bacterial fouling reduction. The electrodes were printed Ag filaments of 100 μm width and 400 μm spacing over an area of 2 × 2 cm2. The insulating Ag electrode coating material was polydimethylsiloxane (PDMS) or thermoplastic polyurethane (TPU) with a thickness of 10 to 40 μm. To evaluate the antibiofouling potential, E. coli inactivation after 2 min contact with the electrified surface and P. fluorescens detachment after 15 and 40 h growth were examined. The extent of bacterial inactivation was related to the insulating material, coating thickness, and applied voltage (magnitude and AC vs DC). A high bacterial inactivation (>98%) was achieved after only 2 min of treatment at 50 V AC and 10 kHz using a 10 μm TPU coating. P. fluorescens detachment after 15 and 40 h incubation in the absence of applied potential was completed with simultaneous cross-flow rinsing and AC application. Higher AC voltages and longer cross-flow rinsing times resulted in greater bacterial detachment with bacterial coverage able to be reduced to <1% after only 2 min of rinsing at 50 V AC and 10 kHz. Theoretical electric field analysis indicated that at 10 V the field strength penetrating the aqueous solution is nonuniform (∼16,000-20,000 V m-1 for the 20 μm TPU) and suggests that dielectrophoresis plays a key role in bacterial detachment. The bacterial inactivation and detachment trends observed in this study indicate that this technique has merit for future antibiofouling surface development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call