Abstract
Brief thermo-nociceptive stimuli elicit low-frequency phase-locked local field potentials (LFPs) and high-frequency gamma-band oscillations (GBOs) in the human insula. Although neither of these responses constitute a direct correlate of pain perception, previous findings suggest that insular GBOs may be strongly related to the activation of the spinothalamic system and/or to the processing of thermal information. To disentangle these different features of the stimulation, we compared the insular responses to brief painful thermonociceptive stimuli, non-painful cool stimuli, mechano-nociceptive stimuli, and innocuous vibrotactile stimuli, recorded using intracerebral electroencephalograpic activity in 7 epileptic patients (9 depth electrodes, 58 insular contacts). All four types of stimuli elicited consistent low-frequency phase-locked LFPs throughout the insula, possibly reflecting supramodal activity. The latencies of thermo-nociceptive and cool low-frequency phase-locked LFPs were shorter in the posterior insula compared to the anterior insula, suggesting a similar processing of thermal input initiating in the posterior insula, regardless of whether the input produces pain and regardless of thermal modality. In contrast, only thermo-nociceptive stimuli elicited an enhancement of insular GBOs, suggesting that these activities are not simply related to the activation of the spinothalamic system or to the conveyance of thermal information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.