Abstract

MR image synthesis has previously been developed as a means of retrospectively optimizing contrast of arbitrary materials in MR images. The first step of this process is to form computed N(H), T1, and T2 images from source images acquired at a variety of echo delay and repetition times. The second step is to take these computed images, along with operator-selected timing parameters, and mathematically generate a synthesized image. Computation is carried out pixel by pixel according to the equation describing the chosen pulse sequence. This paper presents a study of design considerations for a digital image processor capable of rapidly performing the second step, the actual synthesis. In this work the computations inherent to image synthesis are identified, and the feasibility of performing them in high-speed hardware examined. An analysis of the imprecision due to bit-limited calculations shows that an error bound of 0.4% is possible with a 16-bit processor design. A method is described which uses a commercially available image processor by which images can be synthesized according to any of the standard pulse sequences in less than 600 ms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.