Abstract

The final report of the state-of-the-art study of instrumentation for process control and safety in large-scale coal conversion and fluidized-bed combustion systems was distributed in November. A conceptual design for the Solids/Gas Flow Test Facility has been initiated, the major components identified, and vendors located. Work on acoustic flow measurement has included theoretical feasibility studies of acoustic/ultrasonic techniques for mass-flow measurements of slurries and solid/gas media. Initial planning was conducted to establish a laboratory facility necessary to verify theoretical findings. A survey of the literature relating to capacitive measurements was begun to provide a basis for conceptual designs and preliminary bench tests of the feasibility of these designs. Conceptual design of a capacitive on-line solids density measuring device and calculations to select the type of system for initial feasibility tests were carried out. Preliminary tests of neutron capture gamma analysis for on-line elemental composition of liquid and solid streams in coal plants indicate that most coal elements can be detected quantitatively through the pipe walls. A computer program for peak-fitting in the gamma spectrum was modified for requirements of this work. A literature search was started to determine the state-of-the-art in dynamic process modeling of fossil energy system components, physical property models, and process control models. A partial review of abstracts from a computerized literature search has identified over 50 references having possible application to process analysis activities in this program.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.