Abstract
We consider a standard instrumental variables model contaminated by the presence of a large number of exogenous regressors. In an asymptotic framework where this number is proportional to the sample size, we study the impact of their ratio on the validity of existing estimators and tests. When the instruments are few, the inference using the conventional 2SLS estimator and associated t and J statistics, as well as the Anderson–Rubin and Kleibergen tests, is still valid. When the instruments are many, the LIML estimator remains consistent, but the presence of many exogenous regressors changes its asymptotic variance. Moreover, the conventional bias correction of the 2SLS estimator is no longer appropriate, and the associated Hahn–Hausman test is not valid. We provide asymptotically correct versions of bias correction for the 2SLS estimator, derive its asymptotically correct variance estimator, extend the Hansen–Hausman–Newey LIML variance estimator to the case of many exogenous regressors, and propose asymptotically valid modi…cations of the Hahn–Hausman and J tests based on the LIML and bias corrected 2SLS estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.