Abstract

Expression of the tryptophanase operon of Escherichia coli is regulated by catabolite repression and tryptophan-induced transcription antitermination. An induction site activated by l-tryptophan is created in the translating ribosome during synthesis of TnaC, the 24-residue leader peptide. Replacing the tnaC stop codon with a tryptophan codon allows tryptophan-charged tryptophan transfer RNA to substitute for tryptophan as inducer. This suggests that the ribosomal A site occupied by the tryptophanyl moiety of the charged transfer RNA is the site of induction. The location of tryptophan-12 of nascent TnaC in the peptide exit tunnel was crucial for induction. These results show that a nascent peptide sequence can influence translation continuation and termination within a translating ribosome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.