Abstract
Abstract This paper presents an instruction mapping technique for generating a low-level assembly code for digital signal processing algorithms. This technique helps developers to implement retargetable kernel functions with the performance benefits of the low-level assembly languages. The approach is aimed at exceptionally long instruction word (VLIW) architectures, which benefits the most from the proposed method. Mapped algorithms are described by the signal-flow graphs, which are used to find possible parallel operations. The algorithm is converted into low-level code and mapped to the target architecture. This process also introduces the optimization of instruction mapping priority, which leads to the more effective code. The technique was verified on selected kernels, compared to the common programming methods, and proved that it is suitable for VLIW architectures and for portability to other systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.