Abstract

In continuum physics, there are important topological aspects like instantons, θ-terms and the axial anomaly. Conventional lattice discretizations often have difficulties in treating one or the other of these aspects. In this paper, we develop discrete quantum field theories on fuzzy manifolds using noncommutative geometry. Basing ourselves on previous treatments of instantons and chiral fermions (without fermion doubling) on fuzzy spaces and especially fuzzy spheres, we present discrete representations of θ-terms and topological susceptibility for gauge theories and derive axial anomaly on the fuzzy sphere. Our gauge field action for four dimensions is bounded by a constant times the modulus of the instanton number as in the continuum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.