Abstract

Bosonic symmetry-protected topological (SPT) states are gapped disordered phases of matter possessing symmetry-preserving boundary excitations. It has been proposed that, at long wavelengths, the universal properties of an SPT system are captured by an effective non-linear sigma model field theory in the presence of a quantized topological theta-term. By studying lattice models of bosonic SPT states, we are able to identify, in their Euclidean path integral formulation, (discrete) Berry phases that hold relevant physical information on the nature of the SPT ground states. These discrete Berry phases are given intuitive physical interpretation in terms of instanton effects that capture the presence of a theta-term on the microscopic scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call