Abstract

We investigate instantons in finite temperature QCD via Witten's holographic QCD. To study the deconfinement phase, we use the setup proposed in [1]. We find that the sizes of the instantons are stabilized at certain values both in the confinement and deconfinement phases. This agrees with the numerical result in the lattice gauge theory. Besides we find that the gravity duals of the large and small instantons in the deconfinement phase have different topologies. We also argue that the fluctuation of the topological charges is large in confinement phase while it is exponentially suppressed in deconfinement phase, and a continuous transition occurs at the Gross–Witten–Wadia (GWW) point. It would be difficult to observe the counterpart of this transition in lattice QCD, since the GWW point in QCD may stay at an unstable branch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.