Abstract

For a smooth projective toric surface we determine the Donaldson invariants and their wallcrossing in terms of the Nekrasov partition function. Using the solution of the Nekrasov conjecture [33, 38, 3] and its refinement [34], we apply this result to give a generating function for the wallcrossing of Donaldson invariants of good walls of simply connected projective surfaces with $b_+ = 1$ in terms of modular forms. This formula was proved earlier in [19] more generally for simply connected 4-manifolds with $b_+ = 1$, as-suming the Kotschick-Morgan conjecture, and it was also derived by physical arguments in [31].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.