Abstract
In this report is discussed a novel, easy, and general synthesis method to prepare zerovalent iron (ZVI) and copper (ZV Cu) nanoparticles (NPs), from colloid dispersions in an environmental friendly organic solvent, ethylene glycol (EG). Conventional metallic salts are used as nanoparticle precursors; sodium borohydride (NaBH4) is the reducing agent, and triethylamine (TEA) is used as the nanoparticle stabilizer. The chemical changes take place instantaneously under normal reaction conditions. Small iron (alpha-Fe0 phase) and copper (fcc phase) NPs with average diameters of 10.2 +/- 3.3 and 9.5 +/- 2.5 nm, respectively, were obtained. In both cases, the experimental evidence reveals the absence of any metal oxide shell coating the particle surfaces, and their powders remain stable, under aerobic conditions at least for 3 weeks. ZVI NPs were characterized by X-RD, Mössbauer, and Raman spectroscopies and by EELS coupled to HR-TEM. Otherwise, copper NPs were characterized by X-RD, Z-contrast, and HR-TEM. This synthesis pathway is particularly suitable for large-scale and high-quality zerovalent metallic nanoparticle (ZV M NP) production due to its simple process and low cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Physical Chemistry B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.