Abstract

Instantaneous spectral properties of seismic data — center frequency, root-mean-square frequency, bandwidth — often are extracted from time-frequency spectra to describe frequency-dependent rock properties. These attributes are derived using definitions from probability theory. A time-frequency spectrum can be obtained from approaches such as short-time Fourier transform (STFT) or time-frequency continuous-wavelet transform (TFCWT). TFCWT does not require preselecting a time window, which is essential in STFT. The TFCWT method converts a scalogram (i.e., time-scale map) obtained from the continuous-wavelet transform (CWT) into a time-frequency map. However, our method includes mathematical formulas that compute the instantaneous spectral attributes from the scalogram (similar to those computed from the TFCWT), avoiding conversion into a time-frequency spectrum. Computation does not require a predefined window length because it is based on the CWT. This technique optimally decomposes a multiscale signal. For nonstationary signal analysis, spectral decomposition from [Formula: see text] has better time-frequency resolution than STFT, so the instantaneous spectral attributes from CWT are expected to be better than those from STFT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call