Abstract

Microbial adaptation to environmental stress involves complex adaptations of bacteria. Many such responses are transient and dynamic. However, monitoring the dynamic responses of live bacteria to stimulations at the molecular level remain a challenge. This work describes the development of syringe spray mass spectrometry (MS) method that allows direct analyses of molecules released by the bacteria in responses to external stimuli with second level time resolution. We report the application of this technique to visualize the dynamic release of small molecules from Escherichia coli ( E. coli) under ethanol and isopropanol treatments. With the unique time-resolved capability, detailed destruction process of alcohol on bacteria cell wall could be observed. Compared to other ethanol concentrations, 75% ethanol showed stronger damages to lipopolysaccharide (LPS) and peptidoglycan located on E. coli cell wall. Furthermore, isopropanol showed stronger liposolubility and permeability, and an equilibrium could be achieved in a much shorter time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.