Abstract

Many applications, such as marine navigation, land vehicles location, etc., require real time precise positioning under medium or long baseline conditions. In this contribution, we develop a model of real-time kinematic decimeter-level positioning with BeiDou Navigation Satellite System (BDS) triple-frequency signals over medium distances. The ambiguities of two extra-wide-lane (EWL) combinations are fixed first, and then a wide lane (WL) combination is reformed based on the two EWL combinations for positioning. Theoretical analysis and empirical analysis is given of the ambiguity fixing rate and the positioning accuracy of the presented method. The results indicate that the ambiguity fixing rate can be up to more than 98% when using BDS medium baseline observations, which is much higher than that of dual-frequency Hatch-Melbourne-Wübbena (HMW) method. As for positioning accuracy, decimeter level accuracy can be achieved with this method, which is comparable to that of carrier-smoothed code differential positioning method. Signal interruption simulation experiment indicates that the proposed method can realize fast high-precision positioning whereas the carrier-smoothed code differential positioning method needs several hundreds of seconds for obtaining high precision results. We can conclude that a relatively high accuracy and high fixing rate can be achieved for triple-frequency WL method with single-epoch observations, displaying significant advantage comparing to traditional carrier-smoothed code differential positioning method.

Highlights

  • Over the past decades, different GNSS techniques have been developed by researchers, which have made remarkable contributions to scientific applications [1,2] and engineering services [3,4]

  • We aim to develop a new real time differential GNSS positioning technique by using wide lane (WL) measurements obtained from BeiDou Navigation Satellite System (BDS) triple-frequency signals

  • The results indicate that the positioning accuracy of both methods will be mainly affected by the phase error budgets for short and medium distance

Read more

Summary

Introduction

Different GNSS techniques have been developed by researchers, which have made remarkable contributions to scientific applications (e.g., geodesy, remote sensing, space and fundamental physics) [1,2] and engineering services (e.g., surveying, navigation, and timing) [3,4]. With regard to the navigation and positioning techniques of GNSS, they can be divided into two main categories: absolute positioning and relative positioning. Absolute positioning mainly includes standard point positioning (SPP) and precise point positioning (PPP). Relative positioning mainly includes differential DGNSS (DGNSS) and real-time kinematic (RTK) positioning techniques. Different advantages as well as disadvantages are shown for these techniques. SPP, as the simplest positioning technique, can realize real-time positioning using a single receiver with broadcast ephemeris.

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call