Abstract

To date, the diagnosis of whiplash injuries has been very difficult and largely based on subjective, clinical assessment. The work by Winters and Peles Multiple Muscle Systems--Biomechanics and Movement Organization. Springer, New York (1990) suggests that the use of finite helical axes (FHAs) in the neck may provide an objective assessment tool for neck mobility. Thus, the position of the FHA describing head-trunk motion may allow discrimination between normal and pathological cases such as decreased mobility in particular cervical joints. For noisy, unsmoothed data, the FHAs must be taken over rather large angular intervals if the FHAs are to be reconstructed with sufficient accuracy; in the Winters and Peles study, these intervals were approximately 10 degrees. in order to study the movements' microstructure, the present investigation uses instantaneous helical axes (IHAs) estimated from low-pass smoothed video data. Here, the small-step noise sensitivity of the FHA no longer applies, and proper low-pass filtering allows estimation of the IHA even for small rotation velocity omega of the moving neck. For marker clusters mounted on the head and trunk, technical system validation showed that the IHAs direction dispersions were on the order of one degree, while their position dispersions were on the order of 1 mm, for low-pass cut-off frequencies of a few Hz (the dispersions were calculated from omega-weighted errors, in order to account for the adverse effects of vanishing omega). Various simple, planar models relating the instantaneous, 2-D centre of rotation with the geometry and kinematics of a multi-joint neck model are derived, in order to gauge the utility of the FHA and IHA approaches. Some preliminary results on asymptomatic and pathological subjects are provided, in terms of the 'ruled surface' formed by sampled IHAs and of their piercing points through the mid-sagittal plane during a prescribed flexion-extension movement of the neck.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.