Abstract

The paper presents a new gearbox dynamic model for the effective simulation of simultaneous multi-clutches lock/unlock, by exploiting the Power-Oriented Graphs (POG) modeling technique. The generalized structure of the proposed model allows to simulate various gearbox configurations, which may foresee a change in terms of equivalent moment of inertia on the primary or secondary shaft, depending on the internal clutches configuration being function of the currently engaged gear. The peculiarity of the model lies in the instantaneous engagement of the new gear by skipping the slipping transient related to change of the internal clutches configuration, while preserving the natural loss of energy associated to it. The effectiveness of the presented gearbox model is finally tested and compared with classical gearbox modeling solutions with the aid of some simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.