Abstract

We consider the following stochastic heat equation ∂tu(t,x)=12∂x2u(t,x)+b(u(t,x))+σ(u(t,x))W˙(t,x),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\partial _t u(t,x) = \ frac{1}{2} \\partial ^2_x u(t,x) + b(u(t,x)) + \\sigma (u(t,x)) {\\dot{W}}(t,x), \\end{aligned}$$\\end{document}defined for (t,x)∈(0,∞)×R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(t,x)\\in (0,\\infty )\ imes {\\mathbb {R}}$$\\end{document}, where W˙\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\dot{W}}$$\\end{document} denotes space-time white noise. The function σ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sigma $$\\end{document} is assumed to be positive, bounded, globally Lipschitz, and bounded uniformly away from the origin, and the function b is assumed to be positive, locally Lipschitz and nondecreasing. We prove that the Osgood condition ∫1∞dyb(y)<∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\int _1^\\infty \\frac{\ extrm{d}y}{b(y)}<\\infty \\end{aligned}$$\\end{document}implies that the solution almost surely blows up everywhere and instantaneously, In other words, the Osgood condition ensures that P{u(t,x)=∞for allt>0andx∈R}=1.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{P}\\{ u(t,x)=\\infty \\quad \\hbox { for all } t>0 \\hbox { and } x\\in {\\mathbb {R}}\\}=1.$$\\end{document} The main ingredients of the proof involve a hitting-time bound for a class of differential inequalities (Remark 3.3), and the study of the spatial growth of stochastic convolutions using techniques from the Malliavin calculus and the Poincaré inequalities that were developed in Chen et al. (Electron J Probab 26:1–37, 2021, J Funct Anal 282(2):109290, 2022).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.