Abstract
Instantaneous creep in face-centered cubic metals, 5N Al (99.999%), 2N Al (99%) and 4N Cu (99.99%) with different grain sizes, was firstly investigated by sudden stress-change experiments at ultralow strain rates $\dot \varepsilon $ ⩽ 10−10 s−1 and temperature T < 0.32 T m. The experimental results indicate that the observed instantaneous creep is strongly dependent on grain size, the concentration of impurity, and stacking fault energy. Creep in high-purity aluminum, 5N Al, with a very large grain size, d g > 1600 μm, shows non-viscous behavior, and is controlled by the recovery of dislocations in the boundary of dislocation cells. On the other hand, for 5N Al with a small grain size, d g=30 μm, and low-purity aluminum, 2N Al, with d g= 25 μm, creep shows viscous behavior and may be related to ‘low temperature grain boundary sliding’. For high-purity copper, 4N Cu, with d g= 40 μm and lower stacking fault energy, creep shows a non-viscous behavior, and is controlled by the recovery process of dislocations. For all of the samples, creep shows anelastic behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wuhan University of Technology-Mater. Sci. Ed.
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.