Abstract

The copper(I)-catalyzed Huisgen cycloaddition (azide-alkyne cycloaddition) is an important reaction in click chemistry that ideally proceeds instantaneously. An instantaneous Huisgen cycloaddition has been developed that uses a novel catalytic dinuclear copper complex-containing polymeric membrane-installed microflow device. A polymeric membranous copper catalyst was prepared from poly(4-vinylpyridine), copper(II) sulfate, sodium chloride, and sodium ascorbate at the interface of two laminar flows inside microchannels. Elucidation of the structure by XANES, EXAFS, and elemental analysis, as well as second-order Møller-Plesset perturbation theory (MP2) calculations and density functional theory (DFT) calculations assigned the local structure near Cu as a μ-chloro dinuclear Cu(I) complex. The microflow device promotes the instantaneous click reaction of a variety of alkynes and organic azides to afford the corresponding triazoles in quantitative yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.