Abstract

The Bethe-Salpeter formalism in the instantaneous approximation for the interaction kernel entering into the Bethe-Salpeter equation represents a reasonable framework for the description of bound states within relativistic quantum field theory. In contrast to its further simplifications (like, for instance, the so-called reduced Salpeter equation), it allows also the consideration of bound states composed of "light" constituents. Every eigenvalue equation with solutions in some linear space may be (approximately) solved by conversion into an equivalent matrix eigenvalue problem. We demonstrate that the matrices arising in these representations of the instantaneous Bethe-Salpeter equation may be found, at least for a wide class of interactions, in an entirely algebraic manner. The advantages of having the involved matrices explicitly, i.e., not "contaminated" by errors induced by numerical computations, at one's disposal are obvious: problems like, for instance, questions of the stability of eigenvalues may be analyzed more rigorously; furthermore, for small matrix sizes the eigenvalues may even be calculated analytically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.