Abstract

The instantaneous and time-averaged flow fields in the tip region of a ducted marine propulsor are examined. In this flow, a primary tip-leakage vortex interacts with a secondary, co-rotating trailing edge vortex and other co- and counter-rotating vorticity found in the blade wake. Planar particle imaging velocimetry (PIV) is used to examine the flow in a plane approximately perpendicular to the mean axis of the primary vortex. An identification procedure is used to characterize multiple regions of compact vorticity in the flow fields as series of Gaussian vortices. Significant differences are found between the vortex properties from the time-averaged flow fields and the average vortex properties identified in the instantaneous flow fields. Variability in the vortical flow field results from spatial wandering of the vortices, correlated fluctuations of the vortex strength and core size, and both correlated and uncorrelated fluctuations in the relative positions of the vortices. This variability leads to pseudo-turbulent velocity fluctuations. Corrections for some of this variability are performed on the instantaneous flow fields. The resulting processed flow fields reveal a significant increase in flow variability in a region relatively far downstream of the blade trailing edge, a phenomenon that is masked through the process of simple averaging. This increased flow variability is also accompanied by the inception of discrete vortex cavitation bubbles, which is an unexpected result, since the mean flow pressures in the region of inception are much higher than the vapor pressure of the liquid. This suggests that unresolved fine-scale vortex interactions and stretching may be occurring in the region of increased flow variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call