Abstract

Polyethylene Terephthalate Glycol (PETG) is a highly popular feedstock for extrusion-based additive manufacturing. While data are available on the instantaneous properties of additively manufactured PETG, few research have been done on forecasting the creep behaviour of additively manufactured PETG while accounting for the material altering effects of ageing. This research article aims to enhance the understanding of both the instantaneous and time-dependent mechanical properties of additively manufactured PETG through a series of tensile, FEA simulations, Dynamic Mechanical Analysis (DMA), and two types of creep experiments. The details of experimental and mathematical calculations of the instantaneous and time-dependent properties of additively manufactured PETG are provided. Nine independent material parameters have been determined including three Young’s moduli, three shear moduli and three Poisson’s ratios, to fully quantify an orthotropic material model of additively manufactured PETG. The printed material exhibited a Young’s modulus that is 86.5% of the theoretically possible value in direction 1, a Young’s modulus in direction 2 is 66.0% of the theoretical optimum, and a Young’s modulus in direction 3 is within 1% of its theoretical maximum. In addition to reporting the creep behaviour of PETG, the novel application of the Time-Temperature Superposition Principle (TTSP) to additively manufactured PETG has been shown to produce an age-affected creep prediction for up to 3.88 years based on samples aged for 221 h and at 23 °C. The methodology and data models have been found to enable predictions for other ages and temperatures. It was concluded that the application of the TTSP creep methodology was limited by the creep test temperature, 60 °C, after which the material began to behave in a non rheologically-simple manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.