Abstract

In the present study, microwave-assisted, optimized, instant, Terminalia bellirica fruit extract-mediated green synthesis of colloidal silver nanoparticles (AgNPs) has been reported. The synthesized AgNPs were characterized by UV–Vis spectroscopy, FTIR, Zetasizer, FESEM, EDX and XRD. The characteristic surface plasmon peak of reaction mixture at 406 nm confirmed the synthesis of AgNPs. The FTIR studies confirmed phytoconstituents were responsible for the synthesis and stability of AgNPs. The FESEM, EDX and XRD analysis revealed the presence of spherical silver nanoparticles of mean diameter ≤20.6 nm with face-centered cubic crystalline structure. These AgNPs showed notable catalytic activity in reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4. The synthesized AgNPs showed potential antibacterial and antibiofilm activity against bacterial pathogens like Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Thus, these synthesized AgNPs can open avenues for the development of AgNP-based efficient nanocatalyst and potent nanomedicine in future.

Highlights

  • Silver nanoparticles have found remarkable applications in the field of drug delivery, food industries, agriculture, textile industries, water treatment, redox catalysis, green housing construction and medicine (Jagtap and Bapat 2013; Kuunal et al 2016)

  • The field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis revealed the presence of spherical silver nanoparticles of mean diameter B20.6 nm with face-centered cubic crystalline structure

  • Interest of nanotechnology is focused towards the green synthesis of nanoparticles (Park et al 2011)

Read more

Summary

Introduction

Silver nanoparticles have found remarkable applications in the field of drug delivery, food industries, agriculture, textile industries, water treatment, redox catalysis, green housing construction and medicine (Jagtap and Bapat 2013; Kuunal et al 2016). Physical and chemical methods could effectively produce pure and distinct nanoparticles; these methods are quite costly and possibly harmful to the environment due to use of harsh chemicals (Kumar and Yadav 2009). This necessitates cost-effective, commercially feasible, non-toxic and environment friendly process for the synthesis of AgNPs. This necessitates cost-effective, commercially feasible, non-toxic and environment friendly process for the synthesis of AgNPs Biological materials such as microbes, enzymes, plant materials, etc., offer ecofriendly approach for the synthesis of nanoparticles (Velmurugan et al 2011).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call