Abstract
Deep sea debris is any persistent man-made material that ends up in the deep sea. The scale and rapidly increasing amount of sea debris are endangering the health of the ocean. So, many marine communities are struggling for the objective of a clean, healthy, resilient, safe, and sustainably harvested ocean. That includes deep sea debris removal with maneuverable underwater machines. Previous studies have demonstrated that deep learning methods can successfully extract features from seabed images or videos, and are capable of identifying and detecting debris to facilitate debris collection. In this paper, the lightweight neural network (termed DSDebrisNet), which can leverage the detection speed and identification performance to achieve instant detection with high accuracy, is proposed to implement compound-scaled deep sea debris detection. In DSDebrisNet, a hybrid loss function considering the illumination and detection problem was also introduced to improve performance. In addition, the DSDebris dataset is constructed by extracting images and video frames from the JAMSTEC dataset and labeled using a graphical image annotation tool. The experiments are implemented on the deep sea debris dataset, and the results indicate that the proposed methodology can achieve promising detection accuracy in real-time. The in-depth study also provides significant evidence for the successful extension branch of artificial intelligence to the deep sea research domain.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.