Abstract
Abstract Solvent extraction processes have been largely used in various industries. They recently were improved through new physical concepts such as CO2 Supercritical Fluid Extraction, Ultrasound assisted process, Microwave-assisted extraction, Instant Controlled Pressure Drop DIC-assisted extraction… Systematically, a pretreatment stage of grinding takes place in order to improve the exchange surface increasing the starting accessibility. Swelling of the material structure implies an increase of the porosity thus leading to higher solvent diffusivity within the solid matrix. A new concept of expanded granule powder has recently been defined using Instant Controlled Pressure Drop DIC technology. Whatever the type of solvent is (even CO2-SFE), such a swelled structure dramatically intensifies the kinetics through a higher specific exchange surface thanks to the open pores, while improving the solution solvent–solute diffusivity within the solid. Coupled to ultrasound, the internal transfer of solute within the pore solvent can likewise be intensified by replacing molecular diffusion within the pores by an effective convection transfer. In this work, we carried out a first approach of modeling of solvent extraction kinetics of expanded granules involving higher exchange surface and greater internal diffusion process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.