Abstract

Models based on approximation capabilities have recently been studied in the context of Optimal Recovery. These models, however, are not compatible with overparametrization, since model- and data-consistent functions could then be unbounded. This drawback motivates the introduction of refined approximability models featuring an added boundedness condition. Thus, two new models are proposed in this article: one where the boundedness applies to the target functions (first type) and one where the boundedness applies to the approximants (second type). For both types of models, optimal maps for the recovery of linear functionals are first described on an abstract level before their efficient constructions are addressed. By exploiting techniques from semidefinite programming, these constructions are explicitly carried out on a common example involving polynomial subspaces of C[−1,1].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call