Abstract
Instance-based learning (IBL) methods predict the class label of a new instance based directly on the distance between the new unlabeled instance and each labeled instance in the training set, without constructing a classification model in the training phase. In this paper, we introduce a novel class-based feature weighting technique, in the context of instance-based distance methods, using the Ant Colony Optimization meta-heuristic. We address three different approaches of instance-based classification: k-Nearest Neighbours, distance-based Nearest Neighbours, and Gaussian Kernel Estimator. We present a multi-archive adaptation of the ACO? algorithm and apply it to the optimization of the key parameter in each IBL algorithm and of the class-based feature weights. We also propose an ensemble of classifiers approach that makes use of the archived populations of the ACO? algorithm. We empirically evaluate the performance of our proposed algorithms on 36 benchmark datasets, and compare them with conventional instance-based classification algorithms, using various parameter settings, as well as with a state-of-the-art coevolutionary algorithm for instance selection and feature weighting for Nearest Neighbours classifiers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.