Abstract

This paper tackles the issue of objective performance evaluation of machine learning classifiers, and the impact of the choice of test instances. Given that statistical properties or features of a dataset affect the difficulty of an instance for particular classification algorithms, we examine the diversity and quality of the UCI repository of test instances used by most machine learning researchers. We show how an instance space can be visualized, with each classification dataset represented as a point in the space. The instance space is constructed to reveal pockets of hard and easy instances, and enables the strengths and weaknesses of individual classifiers to be identified. Finally, we propose a methodology to generate new test instances with the aim of enriching the diversity of the instance space, enabling potentially greater insights than can be afforded by the current UCI repository.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.