Abstract

Fine-grained information on the level of individual trees constitute key components for forest observation enabling forest management practices tackling the effects of climate change and the loss of biodiversity in forest ecosystems. Such information on individual tree crowns (ITC's) can be derived from the application of ITC segmentation approaches, which utilize remotely sensed data. However, many ITC segmentation approaches require prior knowledge about forest characteristics, which is difficult to obtain for parameterization. This can be avoided by the adoption of data-driven, automated workflows based on convolutional neural networks (CNN). To contribute to the advancements of efficient ITC segmentation approaches, we present a novel ITC segmentation approach based on the YOLOv5 CNN. We analyzed the performance of this approach on a comprehensive international unmanned aerial laser scanning (UAV-LS) dataset (ForInstance), which covers a wide range of forest types. The ForInstance dataset consists of 4192 individually annotated trees in high-density point clouds with point densities ranging from 498 to 9529 points m-2 collected across 80 sites. The original dataset was split into 70% for training and validation and 30% for model performance assessment (test data). For the best performing model, we observed a F1-score of 0.74 for ITC segmentation and a tree detection rate (DET %) of 64% in the test data. This model outperformed an ITC segmentation approach, which requires prior knowledge about forest characteristics, by 41% and 33% for F1-score and DET %, respectively. Furthermore, we tested the effects of reduced point densities (498, 50 and 10 points per m-2) on ITC segmentation performance. The YOLO model exhibited promising F1-scores of 0.69 and 0.62 even at point densities of 50 and 10 points m-2, respectively, which were between 27% and 34% better than the ITC approach that requires prior knowledge.Furthermore, the areas of ITC segments resulting from the application of the best performing YOLO model were close to the reference areas (RMSE = 3.19 m-2), suggesting that the YOLO-derived ITC segments can be used to derive information on ITC level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.