Abstract

The instance segmentation in urban scenes is an important task in smart car applications. Recently, a variety of neural network-based approaches have been proposed. One of the challenges is that there are various scales of objects in a scene, and it requires the neural network to have a large receptive field to deal with the scale variations. In this paper, we utilize a series of fronto-parallel virtual planes and inverse perspective mapping of an input image to the planes, to deal with scale variations. We use LiDAR data to estimate the ground area of the scene and to define virtual planes. Then, the point cloud is used to filter out false-alarms among the over-detection results generated by an off-the-shelf deep neural network, Mask RCNN. The experimental result showed that the proposed approach outperforms Mask RCNN without preprocessing on a benchmark dataset, KITTI dataset [9].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.