Abstract
The development and maintenance of large and complex ontologies are often time-consuming and error-prone. Thus, automated ontology learning and evolution have attracted intensive research interest. In data-centric applications where ontologies are designed from the data or automatically learnt from it, when new data instances are added that contradict the ontology, it is often desirable to incrementally revise the ontology according to the added data. In description logics, this problem can be intuitively formulated as the operation of TBox contraction, i.e., rational elimination of certain axioms from the logical consequences of a TBox, and it is w.r.t. an ABox. In this paper we introduce a model-theoretic approach to such a contraction problem by using an alternative semantic characterisation of DL-Lite TBoxes. We show that entailment checking (without necessarily first computing the contraction result) is in coNP, which does not shift the corresponding complexity in propositional logic, and the problem is tractable when the size of the new data is bounded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.