Abstract

We present an instance-based, online method for learning action models in unanticipated, relational domains. Our algorithm memorizes pre- and post-states of transitions an agent encounters while experiencing the environment, and makes predictions by using analogy to map the recorded transitions to novel situations. Our algorithm is implemented in the Soar cognitive architecture, integrating its task-independent episodic memory module and analogical reasoning implemented in procedural memory. We evaluate this algorithm’s prediction performance in a modified version of the blocks world domain and the taxi domain. We also present a reinforcement learning agent that uses our model learning algorithm to significantly speed up its convergence to an optimal policy in the modified blocks world domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.