Abstract

AbstractWe investigate the use of instance-based ranking methods for surface realization in natural language generation. Our approach to instance-based natural language generation (IBNLG) employs two components: a rule system that ‘overgenerates’ a number of realization candidates from a meaning representation and an instance-based ranker that scores the candidates according to their similarity to examples taken from a training corpus. We develop an efficient search technique for identifying the optimal candidate based on a novel extension of theA* algorithm. The rule system is produced automatically from a semantically annotated fragment of the Penn Treebank II containing management succession texts. We detail the annotation scheme and grammar induction algorithm and evaluate the efficiency and output of the generator. We also discuss issues such as input coverage (completeness) and fluency that are relevant to surface generation in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.