Abstract

Several methods have been developed for the semantic segmentation of reinforced concrete bridges, however, there is a gap for truss bridges. Therefore, in this study a state-of-the-art methodology for the instance and semantic segmentation of point clouds of truss bridges for modelling purposes is presented, which, to the best of the authors' knowledge, is the first such methodology. This algorithm segments each truss element and classifies them as a chord, diagonal, vertical post, interior lateral brace, bottom lateral brace, or strut. The algorithm consists of a sequence of methods, including principal component analysis or clustering, that analyse each point and its neighbours in the point cloud. Case studies show that by adjusting only six manually measured parameters, the algorithm can automatically segment a truss bridge point cloud.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.