Abstract

This manuscript describes skeletal isomerization strategies to install one to four quaternary germanium atoms in the sila-adamantane core, in a cluster analogy to precision germanium doping in silicon-germanium alloys. The first strategy embodies an inorganic variant of single-atom skeletal editing, where we use a sila-Wagner-Meerwein bond shift cascade to exchange a peripheral Ge atom with a core Si atom. We can install up to four Ge atoms at the quaternary diamondoid centers based on controlling the SixGey stoichiometry of our precursor. We find that bridgehead Ge centers can be selectively functionalized over bridgehead Si centers in SiGe adamantanes; we use this chemistry in conjunction with scanning tunneling microscopy break-junction (STM-BJ) measurements to show that Si8Ge2 adamantane wires give a 60% increase in single-molecule conductance compared with Si10 adamantanes. These studies describe the first quantum transport measurements in sila-diamondoid structures, and demonstrate how main-chain Ge doping can be used to increase electronic transmission in sila-diamondoid-based molecular wires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.