Abstract

To summarize the strategy and method for the treatment of critically ill patients with self-made extracorporeal membrane oxygenation (ECMO) system. A observative study was conducted. Fifty-six patients with ECMO assisted support in Fuwai Central China Cardiovascular Disease Hospital from December 2020 to December 2021 were enrolled. According to the clinical situation of the patients and the wishes of the family, conventional ECMO package (conventional group) or self-made ECMO package (self-made group) was chosen. In the conventional group, the disposable ECMO package was used to install the machine, pre charge and exhaust the air. In the self-made group, the disposable consumables commonly used in extracorporeal circulation during cardiac surgery (including centrifugal pump heads, membrane oxygenation, tubes, connectors, etc.) were used to create a self-made ECMO system. Based on the patient's situation, personalized tube model selection and length control were carried out. The preparation time, auxiliary time, auxiliary method, total pre charge volume, free hemoglobin (FHb) levels after 2 hours of ECMO operation and operating costs, as well as changes in hemodynamics, arterial blood gas analysis, and blood indicators within 48 hours after ECMO placement in the two groups were recorded. The occurrence of adverse events related to the ECMO system during ECMO adjuvant therapy in two groups was simultaneously observed. Fifty-six patients were enrolled finally, with 28 cases in the conventional group and 28 cases in the self-made group, and all successfully completed the operation of ECMO. There was no statistically significant difference in ECMO system preparation time, auxiliary time, auxiliary method, and FHb levels after 2 hours of ECMO operation between the conventional group and the self-made group [preparation time (minutes): 13±4 vs. 15±5, auxiliary time (hours): 287±34 vs. 276±42, veno-arterial ECMO (cases): 22 vs. 24, veno-venous ECMO (cases): 6 vs. 4, FHb after 2 hours of ECMO operation (mg/L): 226±67 vs. 253±78, all P > 0.05]. However, the total pre charge volume and operating costs in the self-made group were significantly lower than those in the conventional group [total pre charge volume (mL): 420±25 vs. 650±10, operating costs (ten thousand yuan): 3.8±0.4 vs. 6.7±0.3, both P < 0.01]. The hemodynamics, arterial blood gas analysis, and blood indicators of patients in the two groups were relatively stable within 48 hours after ECMO operation, and most of the indicators between the two groups showed no statistically significant differences. The hemoglobin (Hb) levels at 12, 24, and 48 hours after the machine transfer in the self-made group were significantly higher than those in the conventional group (g/L: 128.5±23.7 vs. 117.5±24.3 at 12 hours, 121.3±31.3 vs. 109.6±33.2 at 24 hours, 118.5±20.1 vs. 105.2±25.7 at 48 hours, all P < 0.05). Both groups of patients did not experience any adverse event related to the ECMO system, such as membrane pulmonary infiltration, joint detachment, and massive hemolysis, during the ECMO assisted treatment process. When implementing ECMO for critically ill patients in clinical practice, a self-made ECMO system with disposable consumables commonly used in extracorporeal circulation during cardiac surgery can be used for cardiopulmonary function assistance support, thereby saving patients medical costs and alleviating their dependence on disposable ECMO package in clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call