Abstract

Abstract With the advancement of the supersonic aero propulsion system, optimizing the combined performance of inlet/engine integration has become increasingly crucial. To solve the coupling inlet/engine problem, a quasi-one-dimensional inlet modeling and drag calculation method are proposed, integrated performance seeking control (PSC) based on the neighborhood-based speciation differential evolution-grey wolf optimizer (NSDE-GWO) is presented and quantitatively analyses the influence of variable geometry inlet regulation on performance. The results reveal that the optimization effect of the ramp angle adjustment is generally better than that of the bleed adjustment, and the NSDE-GWO hybrid algorithm achieves remarkable optimization solutions in all three different modes. The PSC with variable geometry inlet adjustment provides more additional potential for optimization compared with fixed geometry inlet, and the performance can be maximized by adjusting both the bleed adjustment and the ramp angle. This study maximizes the exploitation of potential and has theoretical guidance and practical engineering significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call