Abstract

AbstractSneezing and coughing of a patient are especially dangerous when, together with a jet of air moving at a high speed, droplets of liquid containing viruses fly out. There is a lack of experimental data to create model, describing these processes and calculate the concentration of aerosol particles. The paper describes an installation for assessing the time-varying distribution of velocities and changes in the shape of the aerosol cloud that occurs during coughing and sneezing. The proposed experimental method allows obtaining data on the distribution of relative velocity in a single act of air release. This data is then calibrated against absolute velocity measurements with a low sensitivity sensor installed near the source. The purpose of these studies is to determine the direction and velocity of the cloud carrying the droplets with the virus, as well as the time of its passage past potential recipients. Based on these data, it will be possible to estimate the received dose of infection and the dependence of this dose on the distance between the source and a person near it.KeywordsAerosolModelSensorConcentrationVelocityExperimentVirusTemperatureFlow

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call