Abstract
The instability theory of shock wave was extended from the case with an infinite front[1] to the case of a channel with a rectangular cross section. First, the mathematical formulation of the problem was given which included a system of disturbed equations and three kinds of boundary conditions. Then, the general solutions of the equations upstream and downstream were given and each contained five constants to be determined. Thirdly, under one boundary condition and one assumption, it was proved that all of the disturbances in front of the shock front and one of the two acoustic disturbances behind the shock front should be zero. The boundary condition was that all of the disturbed physical quantities should approach to zero at infinity. The assumption was that only the unstable shock wave was concerned here. So it was reasonable to assume ω=iγ, γ was the instability growth rate and was a positive real number. Another kind of boundary conditions was that the normal disturbed velocities should be zero at the solid wall of the channel, and it led to the result that the wave number of disturbances could only be a set of discrete values. Finally, a total of five conservation equations across the disturbed shock front was the third kind of boundary conditions which was used to determine the remained four undertermined constants downstream and an undetermined constant representing the amplitude of disturbed shock front. Then a dispersion relation was derived. The results show that a positive real γ does exist, so the assumption made above is self-consistent, and there are two modes, instead of one, for unstable shock. One mode corresponds to γ=−W·k (W<0). It is a newly discovered mode and represents an absolute instability of shock. The instability criterion derived from another mode is nearly the same as the one obtained in [2, 3], in addition, its growth rate is newly derived in this paper, and on this basis, it is further pointed out that at j2(ϱ/ϱP)H=1+2M, the shock wave is most unstable, i.e. its nondimensional growth rate Γ=∞
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.