Abstract
Incorporating an instability predictor into a portable sensor has a number of clinically relevant applications. This study investigated the feasibility of developing a real-time assessment tool to predict stepping during standing by monitoring Center of Pressure (COP) measurements. Forward and backward perturbations were performed on 16 able-bodied subjects using a pulley system attached to the subjects' waist. A linear relationship was found between the peak COP velocity (COPv) and the peak COP position caused by the perturbations. As the peak COPv occurs considerably before the peak COP, the peak COP estimated using a regression equation from the peak COPv may serve as an instability predictor. By comparing stepping thresholds with the estimated peak COP, we found that the stepping predictor successfully predicted instability (stepping) earlier than those predictors using actual COP. Results show that the proposed model is a viable solution to predict stepping, and the feasibility of incorporating the model into a neuroprosthesis system for standing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.