Abstract
The instability of longitudinally variable speed viscoelastic plates in contact with ideal liquid is studied for the first time. The effect of free surface waves is taken into account in the present study. The viscoelasticity is considered by using the Kelvin–Voigt viscoelastic constitutive relations. The classical theory of thin plate is utilized to derive the governing equation of variable speed plates. The fluid is assumed to be incompressible, inviscid and irrotational. Additionally, the velocity potential and Bernoulli’s equation are utilized to describe the fluid pressure acting on the vibrating plates. The fluid effect on the vibrational plates is described as the added mass of the plates which can be formulated by the kinematic boundary conditions at the structure–fluid interfaces. Parametric instability is analyzed by directly applying the method of multiple scales to the governing partial-differential equations and boundary conditions. The unstable boundaries are derived from the solvability conditions and the Routh–Hurwitz criterion for principal parametric, sum-type and difference-type combination resonances. Based on the numerical simulation, the effects of some key parameters on the unstable boundaries are illustrated in the excitation frequency and excitation amplitude plane in detail.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.