Abstract

Using microscopic tight-binding equations we derive the effective Hamiltonian for a two-layer hybrid structure comprising a two-dimensional HgTe quantum-well-based topological insulator (TI) coupled to an $s$-wave isotropic superconductor and show that it contains terms describing the mixing of TI subband branches by superconducting correlations induced by the proximity effect. We find that the proximity effect breaks down the rotational symmetry of the TI spectrum. We show that the edge states not only acquire a gap, as follows from the standard theory, but can also become localized by the Andreev-backscattering mechanism in a small coupling regime. In a strong-coupling regime the edge states merge with the bulk states, and the TI transforms into an anisotropic narrow-gap semiconductor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.