Abstract

Contact angle relaxation was measured for captive air bubbles placed on solid surfaces of varying degrees of heterogeneity, roughness, and stability, in water. The experimental results indicate that both advancing and receding contact angles undergo slow relaxation in these water-air-solid systems, due to instabilities of the three-phase contact line region. It is shown that the advancing contact angle decreases and the receding contact angle increases for many systems over a period of a few hours. Also, examples of reverse progressions are reported. Additionally, in extreme cases, the contact angle oscillates down and up, over and over again, preventing the system from stabilization/equilibration. Four different mechanisms are proposed to explain the contact angle relaxation. These include (i) pinning of the three-phase contact line and its slow evolution; (ii) the formation of microdroplets on the solid surface and their coalescence with the base of the gas bubble, which causes dynamic behavior of the three-phase contact line; (iii) deformation of the solid surface and its effect on the apparent contact angle; and (iv) chemical instability of the solid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call