Abstract

AbstractIn this note we consider the W-shaped map $W_0=W_{s_1,s_2}$ with ${1}/{s_1}+{1}/{s_2}=1$ and show that the eigenvalue $1$ is not stable. We do this in a constructive way. For each perturbing map $W_a$ we show the existence of a ‘second’ eigenvalue $\lambda _a$, such that $\lambda _a\to 1$ as $a\to 0$, which proves instability of the isolated spectrum of $W_0$. At the same time, the existence of second eigenvalues close to 1 causes the maps $W_a$to behave in a metastable way. There are two almost-invariant sets, and the system spends long periods of consecutive iterations in each of them, with infrequent jumps from one to the other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.