Abstract

Analyzing exact solutions to the Einstein–Maxwell equations in the Kerr–Schild formalism, we show that the black hole horizon is unstable with respect to electromagnetic excitations. Contrary to perturbative smooth harmonic solutions, the exact solutions for electromagnetic excitations on the Kerr background are accompanied by singular beams which have very strong back-reaction to the metric and break the horizon, forming the holes which allow radiation to escape from the interior of the black hole. As a result, even the weak vacuum fluctuations break the horizon topologically, covering it by a set of fluctuating microholes. We conclude with a series of nontrivial consequences, one of which is that there is no information loss inside of the black hole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.