Abstract

Based on a bootstrap instability method, we prove the existence of unstable strong solutions in the sense of [Formula: see text]-norm to an abstract Rayleigh–Taylor (RT) problem arising from stratified viscous fluids in Lagrangian coordinates. In the proof we develop a method to modify the initial data of the linearized abstract RT problem by exploiting the existence theory of a unique solution to the stratified (steady) Stokes problem and an iterative technique, such that the obtained modified initial data satisfy the necessary compatibility conditions on boundary of the original (nonlinear) abstract RT problem. Applying an inverse transform of Lagrangian coordinates to the obtained unstable solutions and taking then proper values of the parameters, we can further obtain unstable solutions of the RT problem in viscoelastic, magnetohydrodynamics (MHD) flows with zero resistivity and pure viscous flows (with/without interface intension) in Eulerian coordinates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.