Abstract

Vacuum instability of the strong electromagnetic field has been discussed since long time ago. The instability of the strong electric field due to creation of electron pairs is one of the examples, which is known as Schwinger process. What matters are the coupling of particles to the electromagnetic field and the mass of the particle to be produced. The critical electric field for electrons in the minimal coupling is ~ m^2/e . Spin 1/2 neutral particles but with magnetic dipole moments can interact with the electromagnetic field through Pauli coupling. The instability of the particular vacuum under the strong magnetic field can be formulated as the emergence of imaginary parts of the effective potential. In this talk, the development of the imaginary part in the effective potential as a function of the magnetic field strength is discussed for the configurations of the uniform magnetic field and the inhomogeneous magnetic field. Neutrinos are the lightest particle(if not photon or gluon) in the model, of which electromagnetic property is poorly known experimentally. Recently the observation of neutrino oscillation shows the necessity of neutrino masses. It implies that the standard model is subjected to be modified such that non-trivial electromagnetic structure of neutrino should be reconsidered although they are assigned to be neutral. And the possibility of anomalous electromagnetic form factor is an open question theoretically and experimentally. In this talk, the implication of non-vanishing magnetic dipole moment of neutrinos is also discussed: the instability of the strong magnetic field and the enhancement of neutrino production in high energy collider experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call