Abstract
We study the stability of planar soliton solutions of equations describing the dynamics of an infinite inextensible unshearable rod under three-dimensional spatial perturbations. As a result of linearization about the soliton solution, we obtain an inhomogeneous scalar equation. This equation leads to a generalized eigenvalue problem. To establish the instability, we must verify the existence of an unstable eigenvalue (an eigenvalue with a positive real part). The corresponding proof of the instability is done using a local construction of the Evans function depending only on the spectral parameter. This function is analytic in the right half of the complex plane and has at least one zero on the positive real axis coinciding with an unstable eigenvalue of the generalized spectral problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Theoretical and Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.